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Outline
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• Neutron scattering data analysis development with liquid
scintillators at WNR
– correlated n-γ measurements from neutron scattering

• Ideal detector search, challenges, and array development

• Potential for correlated cross section measurements



Scattering is the Most Probable n Reaction,
but Cross Sections have Large Uncertainties
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• Scattering is usually the most likely
neutron interaction

• Uncertainties are prohibitive for
simulation accuracy

• Scattering cross sections are the
evaluation “trash bin”†

†D. Brown, The Nuclear Data Pipeline, WANDA2019
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Liquid Scintillators Used for Initial Studies
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• Able to leverage data collected from other experiments using the
Chi-Nu liquid scintillator array
– High statistics, to better guide data analysis
– Difficult to obtain high statistics with trial detector purchases

• Start with easy case: natural carbon

Begin by simply looking for n-γ coincidence in post-processing analysis

s



Random Coincidence Backgrounds Eliminated
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• Random coincidence rates derived
form Poisson probabilities for
uncorrelated detection rates †

– true coincidence rate must be low
• Calculate the total probability for:

1. Detecting a γ at time tγ
2. Not detecting n over coinc. time

tn − tγ
3. Detecting n at time tn

Coinc. Rate = rb = rγrn∆t

⇒ b =
γn
Nt0

with γ,n = counts

• Works remarkably well here
†O’Donnell, NIMA 805 (2016) 87



Extract n, γ, and Correlated n-γ Distributions
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Measurement of 9Be and 56Fe Neutron Scattering ...
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Figure 4: Experimental results for n, �, and correlated n-� angular distributions for measurements of
neutron reactions on natural carbon as described in the text are shown in panels (a), (b), and (c), respec-
tively. Panels (a) and (b) correspond to an incident neutron energy of ⇡ 14 MeV, while panel (c) corre-
sponds to ⇡ 6.25 MeV. Recent ENDF/B-VIII.0 [2] and relevant literature data are shown where applicable.
The correlation matrices calculated from the experimental result covariance matrices are shown in panels
(d), (e), and (f) for the n, �, and correlated n-� distributions at E inc

n ⇡ 14 MeV.

the environmental neutron detector response. Additionally, these same carbon data were ultimately
analyzed to produce n, �, and correlated n-� angular distributions for incident neutron energies from
6.5–16.5 MeV for carbon inelastic scattering to the first excited state, i.e., the 12C(n,n01) reaction,
and the associated covariances were calculated for each of these distributions. Examples of each of
these distributions and a representative covariance matrix are shown in Figs. 4a–4f. These carbon
results are summarized in Ref. [25], soon to be submitted to the journal Physical Review C. As
stated earlier, correlated n-� measurements are essentially nonexistent for all nuclei, though a few
low-statistics measurements exist for 12C [8, 9, 10]. Thus, essentially all measurements of these
correlated distributions are entirely new, and can be vitally informative for extracting accurate in-
elastic scattering cross sections. Finally, elastic scattering appears in the data as a �-anticoincident
neutron yield, and thus elastic scattering cross section can be extracted after proper treatment of
the accidental detection of inelastic or other neutron detections.

While liquid scintillators are clearly capable of producing high-quality results, they have pro-
hibitive limitations for extensions to more complicated nuclei. First, the PSD capabilities of liquid
scintillators are generally limited to neutron energies from ⇡0.5–12 MeV or so, and thus there must
a cut placed on the data to eliminate overlapping neutron and �-ray counts. Second, the �-ray
energy resolution of liquid scintillators is very poor, making the identification of any specific �-ray

3



Sensitive to All n-γ Producing Reactions
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• Fe levels are reasonably dense

• The liquid scint. time resolution
allows for 56Fe low-lying state
separation

• Natural Pt shows inelastic
scattering, (n,2n), and (n,3n)
reactions, with separation

• Elastic scattering data also exist
from these measurements

• Potential for correlated
measurements of these different
cross sections



Search for the Ideal n-γ Detector
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• CLYC-6 possess all necessary characteristics, with some drawbacks
– Semi-long waveforms: 1.5” detectors to reduce count rates
– PSD-overlap of 6Li(n,t) and 35Cl(n,p): Increased target-detector distance
– Need large number of detectors to have sufficient efficiency



Array Structure Development is in Progress
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• CAD design work in prog.
– Eames Bennett, P-3
– Series of candidate designs

exist

• Transferring candidate array
designs to MCNP for
optimization studies
– e.g., reduce impact on

measurement from
environmental scattering,
while maximizing efficiency



Response Matrix Technique Reqired for n-Det.
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• Typical treatments of detection efficiency work poorly for neutrons
• Need complete description of n interactions with exp. environment

– Especially for smooth distributions (e.g., high level density scattering)

• This was handled with MCNP for Chi-Nu PFNS measurements
– The 35Cl(n,p) cross section is poorly known...
– Need an alternative method
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Correlations Between Cross Sections
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• See Sigeti et al. LA-UR-18-22053 and LA-CP-18-00796
• Also discussed at S. Mosby colloquium on 4/15 and WRIG on 4/6

• Correlations between 239Pu cross sections from fitting to Jezebel
critical assembly
– Shows a, ”...quantitative picture of compensating errors.”
– Strong prior correlations assumed between elastic and inelastic, to match

total XS
– 2D correlation matrices are more informative



XS Correlations
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• Jezebel fitting
enhanced el./inel.
anticorrelation, but
the correlations
were already there!

• Anticorrelation came
from evaluation
requirement to sum
to the total

• No experimental
correlation input

• Exp. correlations are
largely positive...

What if experimental elastic/inelastic correlations were reported?



Correlated XSs Can Make a Big Impact!
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Anticorrelated or 
No Correlation Positive Correlation

Consider a nucleus with only elastic and inelastic scattering XS’s
σ(n,n) = 1.0 ± 0.1 b (10% unc.)
σ(n,n’) = 1.0 ± 0.1 b (10% unc.)} σ(n,tot)  = 2.0 ± 0.04 b (2% unc.)

σ(n,n)σ(n,n’)

Cross sections can vary
within the entire uncertainty

range if the sum is correct

+10%

-10%

+1%
-1%

Cross section must vary in the 
same direction and sum properly
∴ Variation range severely limited



Conclusions
• Promising capabilities with Chi-Nu liquid scintillator array

– Limitations pointed towards another more ideal detector

• CLYC-6 detector array design in progress
– CAD modeling→ MCNP→ Optimization

• Refinement of experimental techniques is required to properly
use these detectors
– Experimental detector response matrix

• Potential for correlated elastic and inelastic scattering cross
section measurements
– Also measure (n,2n)? (n,3n)? Total XS?

• Initial work funded by LDRD Project 20190588ECR
• Experimental measurement and development campaign

underway through LDRD Project 20210329ER

Thanks to Matt Devlin, John O’Donnell, Eames Bennett, Morgan
White, the LANSCE accelerator staff, RMD inc., and you!
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Backup Slides
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MCNP Separates Rxns⇒ Corrections per Rxn
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Data• MCNPr simulation of 12C+n
initially yields all reactions

• MCNPr + PTRAC allows for each
reaction to be separated

• Can be used for in-target scattering
and other corrections individually
for each reaction



Kinematic and PSD Elpasolite Capabilities
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• Beam-off 252Cf measurements at two target-detector distances
• 1 m distance kinematics and PSD shown here

– Near perfect PSD separation
– n detection via 6Li(n,t) and 35Cl(n,p) reactions

• Overlap in PSD space, but separable by kinematics with sufficient distance



Higher γ Response Ideal for γ-Coincident n’s
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• Data from carbon can be compared to determine relative n-γ response
• Higher efficiency for γ than n in elpasolites (opposite of liquids)

– Reduces chance of missing a γ for an inelastically scattered neutron
• CLLBC has very little neutron response
• Detector properties can be compared to liquid scintillators


